Ads
related to: lifting magnets for round material
Search results
Results from the WOW.Com Content Network
Electropermanent magnets made with powerful rare-earth magnets are used as industrial lifting (tractive) magnets to lift heavy ferrous metal objects; when the object reaches its destination the magnet can be switched off, releasing the object. Programmable magnets are also being researched as a means of creating self-building structures. [2] [3]
Magnetic materials and systems are able to attract or repel each other with a force dependent on the magnetic field and the area of the magnets. For example, the simplest example of lift would be a simple dipole magnet positioned in the magnetic fields of another dipole magnet, oriented with like poles facing each other, so that the force ...
Magnetic separation equipment is used for separating magnetic from nonmagnetic material, for example separating ferrous metal from other material in scrap. Industrial lifting magnets; magnetic levitation, used in a maglev train or trains; Induction heating for cooking, manufacturing, and hyperthermia therapy
Electromagnetic suspension (EMS) is the magnetic levitation of an object achieved by constantly altering the strength of a magnetic field produced by electromagnets using a feedback loop. In most cases the levitation effect is mostly due to permanent magnets as they have no power dissipation, with electromagnets only used to stabilise the effect.
A magnetic switchable device (often called a magnetic base) is a magnetic fixture that uses one or more permanent magnets in a configuration that allows the external field to be turned on or off. They are used in many applications including optics, metalworking, lifting, and robotics, to attach items to metal surfaces in a secure but temporary way.
Spin-stabilized magnetic levitation is a phenomenon of magnetic levitation whereby a spinning magnet or array of magnets (typically as a top) is levitated via magnetic forces above another magnet or array of magnets, and stabilised by gyroscopic effect due to a spin rate that is neither too fast, nor too slow to allow for a necessary precession.
Ads
related to: lifting magnets for round material