Search results
Results from the WOW.Com Content Network
This type of mixture, being a finite sum, is called a finite mixture, and in applications, an unqualified reference to a "mixture density" usually means a finite mixture. The case of a countably infinite set of components is covered formally by allowing n = ∞ {\displaystyle n=\infty \!} .
Mixture models are used for clustering, under the name model-based clustering, and also for density estimation. Mixture models should not be confused with models for compositional data, i.e., data whose components are constrained to sum to a constant value (1, 100%, etc.). However, compositional models can be thought of as mixture models, where ...
Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...
In probability theory and statistics a Rayleigh mixture distribution is a weighted mixture of multiple probability distributions where the weightings are equal to the weightings of a Rayleigh distribution. [1] Since the probability density function for a (standard) Rayleigh distribution is given by [2]
In probability theory and statistics, a mixture is a probabilistic combination of two or more probability distributions. [1] The concept arises mostly in two contexts: A mixture defining a new probability distribution from some existing ones, as in a mixture distribution or a compound distribution. Here a major problem often is to derive the ...
The simplest model of the dense fluid viscosity is a (truncated) power series of reduced mole density or pressure. Jossi et al. (1962) [14] presented such a model based on reduced mole density, but its most widespread form is the version proposed by Lohrenz et al. (1964) [15] which is displayed below.
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.
A phase-type distribution is a probability distribution constructed by a convolution or mixture of exponential distributions. [1] It results from a system of one or more inter-related Poisson processes occurring in sequence, or phases. The sequence in which each of the phases occurs may itself be a stochastic process.