enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    The density parameter Ω is defined as the ratio of the actual (or observed) density ρ to the critical density ρ c of the Friedmann universe. The relation between the actual density and the critical density determines the overall geometry of the universe; when they are equal, the geometry of the universe is flat (Euclidean).

  3. Cosmic microwave background - Wikipedia

    en.wikipedia.org/wiki/Cosmic_microwave_background

    Most of the radiation energy in the universe is in the cosmic microwave background, [58] making up a fraction of roughly 6 × 10 −5 of the total density of the universe. [ 59 ] Two of the greatest successes of the Big Bang theory are its prediction of the almost perfect black body spectrum and its detailed prediction of the anisotropies in ...

  4. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    The density parameter is the average density of the universe divided by the critical energy density, that is, the mass energy needed for a universe to be flat. Put another way, If Ω = 1, the universe is flat. If Ω > 1, there is positive curvature. If Ω < 1, there is negative curvature.

  5. Equation of state (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state_(cosmology)

    In an expanding universe, fluids with larger equations of state disappear more quickly than those with smaller equations of state. This is the origin of the flatness and monopole problems of the Big Bang : curvature has w = − 1 / 3 {\displaystyle w=-1/3} and monopoles have w = 0 {\displaystyle w=0} , so if they were around at the time of the ...

  6. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0).

  7. Friedmann–Lemaître–Robertson–Walker metric - Wikipedia

    en.wikipedia.org/wiki/Friedmann–Lemaître...

    Most cosmologists agree that the observable universe is well approximated by an almost FLRW model, i.e., a model that follows the FLRW metric apart from primordial density fluctuations. As of 2003 [update] , the theoretical implications of the various extensions to the FLRW model appear to be well understood, and the goal is to make these ...

  8. Einstein–de Sitter universe - Wikipedia

    en.wikipedia.org/wiki/Einstein–de_sitter_universe

    The Einstein–de Sitter universe is a model of the universe proposed by Albert Einstein and Willem de Sitter in 1932. [1] On first learning of Edwin Hubble's discovery of a linear relation between the redshift of the galaxies and their distance, [2] Einstein set the cosmological constant to zero in the Friedmann equations, resulting in a model of the expanding universe known as the Friedmann ...

  9. Lambda-CDM model - Wikipedia

    en.wikipedia.org/wiki/Lambda-CDM_model

    The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [8] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3% (2018 estimate) of the mass–energy density ...