Search results
Results from the WOW.Com Content Network
To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.
In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...
Any polynomial written in standard form has a unique constant term, which can be considered a coefficient of . In particular, the constant term will always be the lowest degree term of the polynomial. This also applies to multivariate polynomials. For example, the polynomial
A canonical form may simply be a convention, or a deep theorem. For example, polynomials are conventionally written with the terms in descending powers: it is more usual to write x 2 + x + 30 than x + 30 + x 2, although the two forms define the same polynomial.
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, 4 x 2 + 2 x y − 3 y 2 {\displaystyle 4x^{2}+2xy-3y^{2}}
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
A polynomial matrix over a field with determinant equal to a non-zero element of that field is called unimodular, and has an inverse that is also a polynomial matrix. Note that the only scalar unimodular polynomials are polynomials of degree 0 – nonzero constants, because an inverse of an arbitrary polynomial of higher degree is a rational function.