Search results
Results from the WOW.Com Content Network
To test for divisibility by D, where D ends in 1, 3, 7, or 9, the following method can be used. [12] Find any multiple of D ending in 9. (If D ends respectively in 1, 3, 7, or 9, then multiply by 9, 3, 7, or 1.) Then add 1 and divide by 10, denoting the result as m.
2.1 Divisibility rule. ... Download as PDF; Printable version; In other projects ... "If you only knew the magnificence of the 3, 6, and 9, ...
For each of them, compute the remainder by 4 (the second largest modulus) until getting a number congruent to 3 modulo 4. Then one can proceed by adding 20 = 5 × 4 at each step, and computing only the remainders by 3. This gives 4 mod 4 → 0. Continue 4 + 5 = 9 mod 4 →1. Continue 9 + 5 = 14 mod 4 → 2. Continue 14 + 5 = 19 mod 4 → 3.
Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.
The next number in the sequence (the smallest number of additive persistence 5) is 2 × 10 2×(10 22 − 1)/9 − 1 (that is, 1 followed by 2 222 222 222 222 222 222 222 nines). For any fixed base, the sum of the digits of a number is proportional to its logarithm ; therefore, the additive persistence is proportional to the iterated logarithm .
[3] Other common topics for crankery, collected by Dudley, include calculations for the perimeter of an ellipse, roots of quintic equations, Fermat's little theorem, Gödel's incompleteness theorems, Goldbach's conjecture, magic squares, divisibility rules, constructible polygons, twin primes, set theory, statistics, and the Van der Pol oscillator.
“Three Hours To Change Your Life” an excerpt of the book Your Best Year Yet! by Jinny S. Ditzler This document is a 35-page excerpt, including the Welcome chapter of the book and
Euclid devoted part of his Elements to prime numbers and divisibility, topics that belong unambiguously to number theory and are basic to it (Books VII to IX of Euclid's Elements). In particular, he gave an algorithm for computing the greatest common divisor of two numbers (the Euclidean algorithm; Elements, Prop.