enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metabolic acidosis - Wikipedia

    en.wikipedia.org/wiki/Metabolic_acidosis

    Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]

  3. Winters's formula - Wikipedia

    en.wikipedia.org/wiki/Winters's_formula

    Dr. R. W. Winters conducted an experiment in the 1960s on 60 patients with varying degrees of metabolic acidosis. He aimed to empirically determine a mathematical expression representing the effect of respiratory compensation during metabolic acidosis. He measured the blood pH, plasma PCO2, blood base excess, and plasma bicarbonate concentrations.

  4. Respiratory compensation - Wikipedia

    en.wikipedia.org/wiki/Respiratory_compensation

    The amount of respiratory compensation in metabolic acidosis can be estimated using Winters' formula. [2] Hyperventilation due to the compensation for metabolic acidosis persists for 24 to 48 hours after correction of the acidosis, and can lead to respiratory alkalosis. [3] This compensation process can occur within minutes. [4]

  5. Base excess - Wikipedia

    en.wikipedia.org/wiki/Base_excess

    metabolic acidosis, or respiratory alkalosis with renal compensation if too low (less than −2 mEq/L) Blood pH is determined by both a metabolic component, measured by base excess, and a respiratory component, measured by PaCO 2 (partial pressure of carbon dioxide). Often a disturbance in one triggers a partial compensation in the other.

  6. Acidosis - Wikipedia

    en.wikipedia.org/wiki/Acidosis

    Metabolic acidosis is compensated for in the lungs, as increased exhalation of carbon dioxide promptly shifts the buffering equation to reduce metabolic acid. This is a result of stimulation to chemoreceptors , which increases alveolar ventilation , leading to respiratory compensation, otherwise known as Kussmaul breathing (a specific type of ...

  7. Kussmaul breathing - Wikipedia

    en.wikipedia.org/wiki/Kussmaul_breathing

    Kussmaul breathing is respiratory compensation for a metabolic acidosis, most commonly occurring in diabetics in diabetic ketoacidosis.Blood gases of a patient with Kussmaul breathing will show a low partial pressure of CO 2 in conjunction with low bicarbonate because of a forced increased respiration (blowing off the carbon dioxide).

  8. Delta ratio - Wikipedia

    en.wikipedia.org/wiki/Delta_Ratio

    When this happens the numerator is large, the denominator is small, and the result is a delta ratio which is high (>2). This means a combined high anion gap metabolic acidosis and a pre-existing either respiratory acidosis or metabolic alkalosis (causing the high bicarbonate) – i.e. a mixed acid–base metabolic acidosis. [citation needed]

  9. Davenport diagram - Wikipedia

    en.wikipedia.org/wiki/Davenport_diagram

    Four fundamental changes may occur that affect acid-base balance in the body: respiratory acidosis, respiratory alkalosis, metabolic acidosis and metabolic alkalosis. Additionally, a respiratory and a metabolic disturbance may occur simultaneously, such as respiratory acidosis followed by a compensatory shift towards metabolic alkalosis.