enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2 h nodes at the last level h . [ 19 ]

  3. File:Complete binary.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Complete_binary.pdf

    Complete_binary.pdf (733 × 431 pixels, file size: 5 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  5. Min-max heap - Wikipedia

    en.wikipedia.org/wiki/Min-max_heap

    A min-max heap is a complete binary tree containing alternating min (or even) and max (or odd) levels. Even levels are for example 0, 2, 4, etc, and odd levels are respectively 1, 3, 5, etc. We assume in the next points that the root element is at the first level, i.e., 0. Example of Min-max heap

  6. Zipper (data structure) - Wikipedia

    en.wikipedia.org/wiki/Zipper_(data_structure)

    The zipper technique is general in the sense that it can be adapted to lists, trees, and other recursively defined data structures. Such modified data structures are usually referred to as "a tree with zipper" or "a list with zipper" to emphasize that the structure is conceptually a tree or list, while the zipper is a detail of the implementation.

  7. Day–Stout–Warren algorithm - Wikipedia

    en.wikipedia.org/wiki/Day–Stout–Warren_algorithm

    First, the tree is turned into a linked list by means of an in-order traversal, reusing the pointers in the tree's nodes. A series of left-rotations forms the second phase. [3] The Stout–Warren modification generates a complete binary tree, namely one in which the bottom-most level is filled strictly from left to right.

  8. Stern–Brocot tree - Wikipedia

    en.wikipedia.org/wiki/Stern–Brocot_tree

    In number theory, the Stern–Brocot tree is an infinite complete binary tree in which the vertices correspond one-for-one to the positive rational numbers, whose values are ordered from the left to the right as in a search tree. The Stern–Brocot tree was introduced independently by Moritz Stern and Achille Brocot .

  9. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    A binary heap is defined as a binary tree with two additional constraints: [3] Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.