Search results
Results from the WOW.Com Content Network
GDDR5X SDRAM on an NVIDIA GeForce GTX 1080 Ti graphics card. Video random-access memory (VRAM) is dedicated computer memory used to store the pixels and other graphics data as a framebuffer to be rendered on a computer monitor. [1] It often uses a different technology than other computer memory, in order to be read quickly for display on a screen.
Graphics Double Data Rate 6 Synchronous Dynamic Random-Access Memory (GDDR6 SDRAM) is a type of synchronous graphics random-access memory (SGRAM) with a high bandwidth, "double data rate" interface, designed for use in graphics cards, game consoles, and high-performance computing.
Graphics Double Data Rate 7 Synchronous Dynamic Random-Access Memory (GDDR7 SDRAM) is a type of synchronous graphics random-access memory (SGRAM) specified by the JEDEC Semiconductor Memory Standard, with a high bandwidth, "double data rate" interface, designed for use in graphics cards, game consoles, and high-performance computing.
In computer graphics, a video card's pixel fillrate refers to the number of pixels that can be rendered on the screen and written to video memory in one second. [1] Pixel fillrates are given in megapixels per second or in gigapixels per second (in the case of newer cards), and are obtained by multiplying the number of render output units (ROPs) by the clock frequency of the graphics processing ...
Graphics DDR SDRAM (GDDR SDRAM) is a type of synchronous dynamic random-access memory (SDRAM) specifically designed for applications requiring high bandwidth, [1] e.g. graphics processing units (GPUs).
GDDR4 SDRAM, an abbreviation for Graphics Double Data Rate 4 Synchronous Dynamic Random-Access Memory, is a type of graphics card memory (SGRAM) specified by the JEDEC Semiconductor Memory Standard. [ 1 ] [ 2 ] It is a rival medium to Rambus's XDR DRAM .
Video memory was shared with the first 128 KiB of RAM. The exact size of the video memory could be reconfigured by software to meet the needs of the current program. An early hybrid system was the Commodore Amiga which could run as a shared memory system, but would load executable code preferentially into non-shared "fast RAM" if it was available.
Because the GPU has access to every draw operation, it can analyze data in these forms quickly, whereas a CPU must poll every pixel or data element much more slowly, as the speed of access between a CPU and its larger pool of random-access memory (or in an even worse case, a hard drive) is slower than GPUs and video cards, which typically ...