Search results
Results from the WOW.Com Content Network
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.
Instructions to generate the necessary Huffman tree immediately follow the block header. The static Huffman option is used for short messages, where the fixed saving gained by omitting the tree outweighs the percentage compression loss due to using a non-optimal (thus, not technically Huffman) code. Compression is achieved through two steps:
In order for a symbol code scheme such as the Huffman code to be decompressed, the same model that the encoding algorithm used to compress the source data must be provided to the decoding algorithm so that it can use it to decompress the encoded data. In standard Huffman coding this model takes the form of a tree of variable-length codes, with ...
Zstandard was designed to give a compression ratio comparable to that of the DEFLATE algorithm (developed in 1991 and used in the original ZIP and gzip programs), but faster, especially for decompression. It is tunable with compression levels ranging from negative 7 (fastest) [6] to 22 (slowest in compression speed, but best compression ratio).
PPM compression implementations vary greatly in other details. The actual symbol selection is usually recorded using arithmetic coding, though it is also possible to use Huffman encoding or even some type of dictionary coding technique. The underlying model used in most PPM algorithms can also be extended to predict multiple symbols.
The algorithm uses several layers of compression techniques, such as run-length encoding (RLE), Burrows–Wheeler transform (BWT), move-to-front transform (MTF), and Huffman coding. bzip2 compresses data in blocks between 100 and 900 kB and uses the Burrows–Wheeler transform to convert frequently recurring character sequences into strings of ...
The package-merge algorithm is an O(nL)-time algorithm for finding an optimal length-limited Huffman code for a given distribution on a given alphabet of size n, where no code word is longer than L. It is a greedy algorithm , and a generalization of Huffman's original algorithm .