Search results
Results from the WOW.Com Content Network
In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction. Dijkstra's algorithm and the related A* search algorithm are verifiably optimal greedy algorithms for graph search and shortest path finding.
The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [34] [35] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...
A row of slot machines in Las Vegas. In probability theory and machine learning, the multi-armed bandit problem (sometimes called the K-[1] or N-armed bandit problem [2]) is a problem in which a decision maker iteratively selects one of multiple fixed choices (i.e., arms or actions) when the properties of each choice are only partially known at the time of allocation, and may become better ...
It is a greedy algorithm that adds the best feature (or deletes the worst feature) at each round. The main control issue is deciding when to stop the algorithm. In machine learning, this is typically done by cross-validation. In statistics, some criteria are optimized. This leads to the inherent problem of nesting.
Delayed Q-learning is an alternative implementation of the online Q-learning algorithm, with probably approximately correct (PAC) learning. [26] Greedy GQ is a variant of Q-learning to use in combination with (linear) function approximation. [27]
The greedy algorithm heuristic says to pick whatever is currently the best next step regardless of whether that prevents (or even makes impossible) good steps later. It is a heuristic in the sense that practice indicates it is a good enough solution, while theory indicates that there are better solutions (and even indicates how much better, in ...
Pages in category "Greedy algorithms" The following 9 pages are in this category, out of 9 total. This list may not reflect recent changes. A. A* search algorithm; B.
A greedy algorithm is optimal for every R-compatible linear objective function over a greedoid. The intuition behind this proposition is that, during the iterative process, each optimal exchange of minimum weight is made possible by the exchange property, and optimal results are obtainable from the feasible sets in the underlying greedoid.