Search results
Results from the WOW.Com Content Network
Activator binds to an inducer and the complex binds to the activation sequence and activates target gene. [2] Removing the inducer stops transcription. [2] Because a small inducer molecule is required, the increased expression of the target gene is called induction. [2] The lactose operon is one example of an inducible system. [2]
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. [1] Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.
The L-arabinose operon, also called the ara or araBAD operon, is an operon required for the breakdown of the five-carbon sugar L-arabinose in Escherichia coli. [1] The L-arabinose operon contains three structural genes: araB, araA, araD (collectively known as araBAD), which encode for three metabolic enzymes that are required for the metabolism of L-arabinose. [2]
The lac operon in the prokaryote E. coli consists of genes that produce enzymes to break down lactose. Its operon is an example of a prokaryotic silencer. The three functional genes in this operon are lacZ, lacY, and lacA. [6] The repressor gene, lacI, will produce the repressor protein LacI which is under allosteric regulation.
Taking advantage of an operon fusion placing the lac operon (responsible for producing beta-galactosidase, a protein which degrades lactose) under the control of an SOS-related protein, a simple colorimetric assay for genotoxicity is possible.
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
Though ONPG mimics lactose and is hydrolyzed by β-galactosidase, it is unable to act as an inducer for the lac operon. Without another lactose analog that can act as an inducer, such as isopropyl β- D -1-thiogalactopyranoside (IPTG), β-galactosidase will not be transcribed and ONPG will not be hydrolyzed.