Search results
Results from the WOW.Com Content Network
Satellite navigation solution for the receiver's position (geopositioning) involves an algorithm.In essence, a GNSS receiver measures the transmitting time of GNSS signals emitted from four or more GNSS satellites (giving the pseudorange) and these measurements are used to obtain its position (i.e., spatial coordinates) and reception time.
The pseudorange (from pseudo-and range) is the pseudo distance between a satellite and a navigation satellite receiver (see GNSS positioning calculation), for instance Global Positioning System (GPS) receivers.
Hardware-wise, a GNSS receiver is needed to interpret satellite signals and compute the user’s location. Nowadays, it is usually a single integrated circuit (IC).. Satellite navigation software is most commonly used on mobile devices, particularly mobile phones, to provide the positioning functionality.
The GPS gives an absolute drift-free position value that can be used to reset the INS solution or can be blended with it by use of a mathematical algorithm, such as a Kalman filter. The angular orientation of the unit can be inferred from the series of position updates from the GPS.
A GPS disciplined oscillator unit with a GPS antenna input, 10 MHz and 1 pulse-per-second (PPS) outputs, and an RS-232 interface.. A GPS clock, or GPS disciplined oscillator (GPSDO), is a combination of a GPS receiver and a high-quality, stable oscillator such as a quartz or rubidium oscillator whose output is controlled to agree with the signals broadcast by GPS or other GNSS satellites.
RINEX version 3.02 was submitted in April 2013 and contain new observation codes [3] from GPS or Galileo systems. Although not part of the RINEX format, the Hatanaka compression scheme is commonly used to reduce the size of RINEX files, resulting in an ASCII-based CompactRINEX or CRINEX [ 4 ] format. [ 5 ]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Accuracy depends on satellite geometry, local conditions, receiver capability and other variables, but typically the L1-only solution (VBS - Virtual Base Station) yields horizontal accuracy of < +/1 meter > 95% of the time and the L1/L2 solutions (OmniSTAR HP, OmniSTAR XP or HP/XP combined) provide horizontal accuracies of < +/- 15 cm > 95% of ...