Search results
Results from the WOW.Com Content Network
Multiple forms of extrachromosomal DNA exist, and, while some of these serve important biological functions, [1] they can also play a role in diseases such as cancer. [2] [3] [4] In prokaryotes, nonviral extrachromosomal DNA is primarily found in plasmids, whereas, in eukaryotes extrachromosomal DNA is primarily found in organelles. [1]
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA structure that was first discovered in 1964 by Alix Bassel and Yasuo Hotta. [1] In contrast to previously identified circular DNA structures (e.g., bacterial plasmids, mitochondrial DNA, circular bacterial chromosomes, or chloroplast DNA), eccDNA are circular DNA found in the eukaryotic nuclei of plant and animal ...
A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms.
Circular extrachromosomal DNA are not only found in yeast but other eukaryotic organisms. [15] [16] A regulated formation of eccDNA in preblastua Xenopus embryos has been developed. The population of circular rDNA is decreased in embryos, indicative of the circular rDNA migrating to linear DNA, as was shown in their analysis on 2D gel ...
Inside the cell is the cytoplasmic region that contains the genome (DNA), ribosomes and various sorts of inclusions. [2] The genetic material is freely found in the cytoplasm. Prokaryotes can carry extrachromosomal DNA elements called plasmids, which are usually circular.
Australian researchers studying glacial caves in Antarctica say they are so warm they could support plant and animal life. DNA found in warm Antarctic caves could mean new plant and animal discoveries
Researchers last year reported the discovery of DNA from animals, plants and microbes dating to about 2 million years ago from sediment at Greenland's remote northernmost point.
DNA transposons, LTR retrotransposons, SINEs, and LINEs make up a majority of the human genome. Mobile genetic elements (MGEs), sometimes called selfish genetic elements, [1] are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms.