enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e.g. the atom or molecule positions in a crystal, or more generally, the orbit of a group action under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in ...

  3. Laves graph - Wikipedia

    en.wikipedia.org/wiki/Laves_graph

    The regular skew polyhedron onto which the Laves graph can be inscribed. The edges of the Laves graph are diagonals of some of the squares of this polyhedral surface. As Coxeter (1955) describes, the vertices of the Laves graph can be defined by selecting one out of every eight points in the three-dimensional integer lattice, and forming their nearest neighbor graph.

  4. Lattice graph - Wikipedia

    en.wikipedia.org/wiki/Lattice_graph

    A common type of lattice graph (known under different names, such as grid graph or square grid graph) is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being in the range 1, ..., n, y-coordinates being in the range 1, ..., m, and two vertices being connected by an edge whenever the corresponding points are at distance 1.

  5. Unimodular lattice - Wikipedia

    en.wikipedia.org/wiki/Unimodular_lattice

    In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E 8 lattice and the Leech lattice are two famous examples.

  6. Rhombille tiling - Wikipedia

    en.wikipedia.org/wiki/Rhombille_tiling

    In geometry, the rhombille tiling, [1] also known as tumbling blocks, [2] reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets ...

  7. Discrete geometry - Wikipedia

    en.wikipedia.org/wiki/Discrete_geometry

    A lattice in a locally compact topological group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R n , this amounts to the usual geometric notion of a lattice , and both the algebraic structure of lattices and the geometry of the totality of all lattices are ...

  8. Lattice (discrete subgroup) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(discrete_subgroup)

    Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).

  9. Spatial network - Wikipedia

    en.wikipedia.org/wiki/Spatial_network

    [1] [2] The simplest mathematical realization of spatial network is a lattice or a random geometric graph (see figure in the right), where nodes are distributed uniformly at random over a two-dimensional plane; a pair of nodes are connected if the Euclidean distance is smaller than a given neighborhood radius.