Search results
Results from the WOW.Com Content Network
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
1. Transpose: if A is a matrix, denotes the transpose of A, that is, the matrix obtained by exchanging rows and columns of A. Notation is also used. The symbol is often replaced by the letter T or t. 2. For inline uses of the symbol, see ⊤. ⊥ 1.
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
The determinant, permanent and other immanants of a matrix are homogeneous multilinear polynomials in the elements of the matrix (and also multilinear forms in the rows or columns). The multilinear polynomials in n {\displaystyle n} variables form a 2 n {\displaystyle 2^{n}} -dimensional vector space , which is also the basis used in the ...
To solve a matrix ODE according to the three steps detailed above, using simple matrices in the process, let us find, say, a function x and a function y both in terms of the single independent variable t, in the following homogeneous linear differential equation of the first order,
A sweet treat: Peet's Coffee will be giving out free mochas on New Year's Day at Peet's retail coffeebar locations starting 12 p.m. local time with the code "Mocha Mousse."
Since L and M commute, the matrix L + M is nilpotent and I + (L + M)/2 is invertible with inverse given by a Neumann series. Hence L = M. If A is a matrix with positive eigenvalues and minimal polynomial p(t), then the Jordan decomposition into generalized eigenspaces of A can be deduced from the partial fraction expansion of p(t) −1.