Search results
Results from the WOW.Com Content Network
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
In computer programming, a loop counter is a control variable that controls the iterations of a loop (a computer programming language construct). It is so named because most uses of this construct result in the variable taking on a range of integer values in some orderly sequences (for example., starting at 0 and ending at 10 in increments of 1)
In these examples, if N < 1 then the body of loop may execute once (with I having value 1) or not at all, depending on the programming language. In many programming languages, only integers can be reliably used in a count-controlled loop. Floating-point numbers are represented imprecisely due to hardware constraints, so a loop such as
In open-loop control, the control action from the controller is independent of the "process output" (or "controlled process variable"). A good example of this is a central heating boiler controlled only by a timer, so that heat is applied for a constant time, regardless of the temperature of the building.
Dim counter As Integer = 5 ' init variable and set value Dim factorial As Integer = 1 ' initialize factorial variable Do While counter > 0 factorial = factorial * counter counter = counter-1 Loop ' program goes here, until counter = 0 'Debug.Print factorial ' Console.WriteLine(factorial) in Visual Basic .NET
The usual objective of control theory is to control a system, often called the plant, so its output follows a desired control signal, called the reference, which may be a fixed or changing value. To do this a controller is designed, which monitors the output and compares it with the reference.
Loops are controlled using the LTx and LBx registers (x either 0 to 1) to set the top and bottom of the loop — that is, the first and last instructions to be executed, which can be the same for a loop with only one instruction — and LCx for the loop count. The loop repeats if LCx is nonzero at the end of the loop, in which case LCx is ...
Many PID loops control a mechanical device (for example, a valve). Mechanical maintenance can be a major cost and wear leads to control degradation in the form of either stiction or backlash in the mechanical response to an input signal. The rate of mechanical wear is mainly a function of how often a device is activated to make a change.