Search results
Results from the WOW.Com Content Network
Helicity is a pseudo-scalar quantity: it changes sign under change from a right-handed to a left-handed frame of reference; it can be considered as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known integral invariants of the Euler equations; the other three are energy, momentum and angular momentum.
The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. [1] That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally ...
Liquid properties Std enthalpy change of formation, Δ f H o liquid: −277.38 kJ/mol Standard molar entropy, S o liquid: 159.9 J/(mol K) Enthalpy of combustion, Δ c H o: −1370.7 kJ/mol Heat capacity, c p: 112.4 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas: −235.3 kJ/mol Standard molar entropy, S o gas: 283 J ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
where is the viscosity of the liquid mixture, is the viscosity (equation) for fluid component i when flowing as a pure fluid, and is the molfraction of component i in the liquid mixture. The Grunberg-Nissan (1949) [10] mixing rule extends the Arrhenius rule to
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm–Bragg model differs by incorporating the ease of propagation (self-replication) with respect to nucleation.
Cloth, treated to be hydrophobic, shows a high contact angle. The theoretical description of contact angle arises from the consideration of a thermodynamic equilibrium between the three phases: the liquid phase (L), the solid phase (S), and the gas or vapor phase (G) (which could be a mixture of ambient atmosphere and an equilibrium concentration of the liquid vapor).