enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean anomaly - Wikipedia

    en.wikipedia.org/wiki/Mean_anomaly

    Shown are mean anomaly and true anomaly for two units of time. (Note that for visual simplicity, a non-overlapping circular orbit is diagrammed, thus this circular orbit with same orbital period is not shown in true scale with this elliptical orbit: for scale to be true for the two orbits of equal period, these orbits must intersect.)

  3. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    A circular orbit is depicted in the top-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy remains constant throughout the constant speed circular orbit.

  4. Mean longitude - Wikipedia

    en.wikipedia.org/wiki/Mean_longitude

    An orbiting body's mean longitude is calculated L = Ω + ω + M, where Ω is the longitude of the ascending node, ω is the argument of the pericenter and M is the mean anomaly, the body's angular distance from the pericenter as if it moved with constant speed rather than with the variable speed of an elliptical orbit.

  5. Mean motion - Wikipedia

    en.wikipedia.org/wiki/Mean_motion

    In orbital mechanics, mean motion (represented by n) is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. [1]

  6. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets.

  7. Argument of periapsis - Wikipedia

    en.wikipedia.org/wiki/Argument_of_periapsis

    In the case of circular orbits it is often assumed that the periapsis is placed at the ascending node and therefore ω = 0. However, in the professional exoplanet community, ω = 90° is more often assumed for circular orbits, which has the advantage that the time of a planet's inferior conjunction (which would be the time the planet would ...

  8. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    Instead of the mean anomaly at epoch, the mean anomaly M, mean longitude, true anomaly ν 0, or (rarely) the eccentric anomaly might be used. Using, for example, the "mean anomaly" instead of "mean anomaly at epoch" means that time t must be specified as a seventh orbital element. Sometimes it is assumed that mean anomaly is zero at the epoch ...

  9. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    averaging over the true anomaly (the true orbital angle, measured at the focus) results in the semi-minor axis =. averaging over the mean anomaly (the fraction of the orbital period that has elapsed since pericentre, expressed as an angle) gives the time-average a ( 1 + e 2 2 ) {\displaystyle a\left(1+{\frac {e^{2}}{2}}\right)\,} .