enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electromagnetic absorption by water - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_absorption...

    The plot for vapor is a transformation of data Synthetic spectrum for gas mixture ' Pure H 2 O ' (296K, 1 atm) retrieved from Hitran on the Web Information System. [6] Liquid water absorption spectrum across a wide wavelength range [missing source] The absorption of electromagnetic radiation by water depends on the state of the water.

  3. Raman scattering - Wikipedia

    en.wikipedia.org/wiki/Raman_scattering

    Raman spectroscopy employs the Raman effect for substances analysis. The spectrum of the Raman-scattered light depends on the molecular constituents present and their state, allowing the spectrum to be used for material identification and analysis. Raman spectroscopy is used to analyze a wide range of materials, including gases, liquids, and ...

  4. Rotational–vibrational spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Rotational–vibrational...

    The water molecule is an important example of this class of molecule, particularly because of the presence of water vapor in the atmosphere. The low-resolution spectrum shown in green illustrates the complexity of the spectrum. At wavelengths greater than 10 μm (or wavenumbers less than 1000 cm −1) the

  5. Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Raman_spectroscopy

    [10] Raman spectroscopy offers several advantages for microscopic analysis. Since it is a light scattering technique, specimens do not need to be fixed or sectioned. Raman spectra can be collected from a very small volume (< 1 μm in diameter, < 10 μm in depth); these spectra allow the identification of species present in that volume. [51]

  6. Stimulated Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Stimulated_Raman_spectroscopy

    Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS), is a form of spectroscopy employed in physics, chemistry, biology, and other fields. . The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational (or rotational ...

  7. Resonance Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Resonance_Raman_spectroscopy

    Like ordinary Raman spectroscopy, resonance Raman is compatible with samples in water, which has a very weak scattering intensity and little contribution to spectra. However, the need for an excitation laser with a wavelength matching that of an electronic transition in the analyte of interest somewhat limits the applicability of the method.

  8. Raman microscope - Wikipedia

    en.wikipedia.org/wiki/Raman_microscope

    By using Raman microspectroscopy, in vivo time- and space-resolved Raman spectra of microscopic regions of samples can be measured. Sampling is non-destructive and water, media, and buffers typically do not interfere with the analysis. Consequently, in vivo time- and space-resolved Raman spectroscopy is suitable to examine proteins, cells and ...

  9. Ocean optics - Wikipedia

    en.wikipedia.org/wiki/Ocean_optics

    Ocean optics is the study of how light interacts with water and the materials in water. Although research often focuses on the sea, the field broadly includes rivers, lakes, inland waters, coastal waters, and large ocean basins. How light acts in water is critical to how ecosystems function underwater.