Search results
Results from the WOW.Com Content Network
Even when they terminate, parsers that use recursive descent with backtracking may require exponential time. Although predictive parsers are widely used, and are frequently chosen if writing a parser by hand, programmers often prefer to use a table-based parser produced by a parser generator , [ citation needed ] either for an LL( k ) language ...
A formal grammar that contains left recursion cannot be parsed by a naive recursive descent parser unless they are converted to a weakly equivalent right-recursive form. . However, recent research demonstrates that it is possible to accommodate left-recursive grammars (along with all other forms of general CFGs) in a more sophisticated top-down parser by use of curta
Regular languages are a category of languages (sometimes termed Chomsky Type 3) which can be matched by a state machine (more specifically, by a deterministic finite automaton or a nondeterministic finite automaton) constructed from a regular expression.
With many levels of precedence, implementing this grammar with a predictive recursive-descent parser can become inefficient. Parsing a number, for example, can require five function calls: one for each non-terminal in the grammar until reaching primary. An operator-precedence parser can do the same more efficiently. [1]
In computer programming, a parser combinator is a higher-order function that accepts several parsers as input and returns a new parser as its output. In this context, a parser is a function accepting strings as input and returning some structure as output, typically a parse tree or a set of indices representing locations in the string where parsing stopped successfully.
In a typical backtracking solution to this problem, one could define a partial candidate as a list of integers c = (c[1], c[2], …, c[k]), for any k between 0 and n, that are to be assigned to the first k variables x[1], x[2], …, x[k]. The root candidate would then be the empty list (). The first and next procedures would then be
Otherwise choose a column c (deterministically). Choose a row r such that A r, c = 1 (nondeterministically). Include row r in the partial solution. For each column j such that A r, j = 1, for each row i such that A i, j = 1, delete row i from matrix A. delete column j from matrix A. Repeat this algorithm recursively on the reduced matrix A.
In mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. [1] Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers, where the datatypes are ...