enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    In statistics, the t distribution was first derived as a posterior distribution in 1876 by Helmert [19] [20] [21] and Lüroth. [22] [23] [24] As such, Student's t-distribution is an example of Stigler's Law of Eponymy. The t distribution also appeared in a more general form as Pearson type IV distribution in Karl Pearson's 1895 paper. [25]

  3. Multivariate t-distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_t-distribution

    One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]

  4. Noncentral t-distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_t-distribution

    The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.

  5. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    From the perspective of a given distribution, the parameters are constants, and terms in a density function that contain only parameters, but not variables, are part of the normalization factor of a distribution (the multiplicative factor that ensures that the area under the density—the probability of something in the domain occurring ...

  6. Skewed generalized t distribution - Wikipedia

    en.wikipedia.org/wiki/Skewed_generalized_t...

    where is the beta function, is the location parameter, > is the scale parameter, < < is the skewness parameter, and > and > are the parameters that control the kurtosis. and are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.

  7. Hotelling's T-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Hotelling's_T-squared...

    In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.

  8. Log-t distribution - Wikipedia

    en.wikipedia.org/wiki/Log-t_distribution

    The fact that the log-t distribution has infinite mean is a problem when using it to value options, but there are techniques to overcome that limitation, such as by truncating the probability density function at some arbitrary large value. [6] [7] [8] The log-t distribution also has applications in hydrology and in analyzing data on cancer ...

  9. T distribution - Wikipedia

    en.wikipedia.org/wiki/T_distribution

    The phrase "T distribution" may refer to Student's t-distribution in univariate probability theory, Hotelling's T-square distribution in multivariate statistics.