enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    Schur decomposition. In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily similar to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix.

  3. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    Gauss–Seidel method. In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel.

  4. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  5. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB was invented by mathematician and computer programmer Cleve Moler. [25] The idea for MATLAB was based on his 1960s PhD thesis. [25] Moler became a math professor at the University of New Mexico and started developing MATLAB for his students [25] as a hobby. [26] He developed MATLAB's initial linear algebra programming in 1967 with his ...

  6. Commutation matrix - Wikipedia

    en.wikipedia.org/wiki/Commutation_matrix

    In mathematics, especially in linear algebra and matrix theory, the commutation matrix is used for transforming the vectorized form of a matrix into the vectorized form of its transpose. Specifically, the commutation matrix K(m,n) is the nm × mn matrix which, for any m × n matrix A, transforms vec (A) into vec (AT): K(m,n) vec (A) = vec (AT) .

  7. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [ 1 ] It was independently described by E. H. Moore in 1920, [ 2 ] Arne Bjerhammar in 1951, [ 3 ] and Roger Penrose in 1955. [ 4 ]

  8. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    LU decomposition. In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of ...

  9. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Kernel (linear algebra) In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. [1] That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the ...