Search results
Results from the WOW.Com Content Network
The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.
The Hough transform is a feature extraction technique used in image analysis, computer vision, pattern recognition, and digital image processing. [1] [2] The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure.
For example, in Python, to print the string Hello, World! followed by a newline, one only needs to write print ("Hello, World!" In contrast, the equivalent code in C++ [ 7 ] requires the import of the input/output (I/O) software library , the manual declaration of an entry point , and the explicit instruction that the output string should be ...
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
Piet program that prints 'Piet' A "Hello World" program in Piet. Piet is a language designed by David Morgan-Mar, whose programs are bitmaps that look like abstract art. [29] The execution is guided by a "pointer" that moves around the image, from one continuous coloured region to the next. Procedures are carried out when the pointer exits a ...
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Collision detection is the computational problem of detecting an intersection of two or more objects in virtual space. More precisely, it deals with the questions of if , when and where two or more objects intersect.