Search results
Results from the WOW.Com Content Network
A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. [1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds ...
The basic model for thermal transients from neutron star mergers was introduced by Li-Xin Li and Bohdan PaczyĆski in 1998. [1] In their work, they suggested that the radioactive ejecta from a neutron star merger is a source for powering thermal transient emission, later dubbed kilonova. [17]
Neutron star mergers are a recently discovered major source of elements produced in the r-process. When two neutron stars collide, a significant amount of neutron-rich matter may be ejected which then quickly forms heavy elements. Cosmic ray spallation is a process wherein cosmic rays impact nuclei and fragment them.
The creation of free neutrons by electron capture during the rapid collapse to high density of a supernova core along with quick assembly of some neutron-rich seed nuclei makes the r-process a primary nucleosynthesis process, a process that can occur even in a star initially of pure H and He.
Electromagnetic observations help support the theory that neutron star mergers contribute to rapid neutron capture (r-process) nucleosynthesis [28] —previously assumed to be associated with supernova explosions—and are therefore the primary source of r-process elements heavier than iron, [1] including gold and platinum. [48]
Nuclear physics experiments address stability (i.e., lifetimes and masses) for atomic nuclei well beyond the regime of stable nuclides into the realm of radioactive/unstable nuclei, almost to the limits of bound nuclei (the drip lines), and under high density (up to neutron star matter) and high temperature (plasma temperatures up to 10 9 K ...
When two neutron stars orbit each other closely, they spiral inward as time passes due to gravitational radiation. When they meet, their merger leads to the formation of either a heavier neutron star or a black hole, depending on whether the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit. This creates a magnetic field that ...
Nucleogenesis (also known as nucleosynthesis) as a general phenomenon is a process usually associated with production of nuclides in the Big Bang or in stars, by nuclear reactions there. Some of these neutron reactions (such as the r-process and s-process) involve absorption by atomic nuclei of high-temperature (high energy) neutrons from the star.