enow.com Web Search

  1. Ads

    related to: catalan numbers pdf worksheet 1

Search results

  1. Results from the WOW.Com Content Network
  2. Catalan number - Wikipedia

    en.wikipedia.org/wiki/Catalan_number

    The only known odd Catalan numbers that do not have last digit 5 are C 0 = 1, C 1 = 1, C 7 = 429, C 31, C 127 and C 255. The odd Catalan numbers, C n for n = 2 k − 1, do not have last digit 5 if n + 1 has a base 5 representation containing 0, 1 and 2 only, except in the least significant place, which could also be a 3. [3]

  3. Schröder–Hipparchus number - Wikipedia

    en.wikipedia.org/wiki/Schröder–Hipparchus_number

    Substituting k = 1 into this formula gives the Catalan numbers and substituting k = 2 into this formula gives the Schröder–Hipparchus numbers. [7] In connection with the property of Schröder–Hipparchus numbers of counting faces of an associahedron, the number of vertices of the associahedron is given by the Catalan numbers.

  4. Lobb number - Wikipedia

    en.wikipedia.org/wiki/Lobb_number

    In combinatorial mathematics, the Lobb number L m,n counts the ways that n + m open parentheses and n − m close parentheses can be arranged to form the start of a valid sequence of balanced parentheses. [1] Lobb numbers form a natural generalization of the Catalan numbers, which count the complete strings of balanced parentheses of a given ...

  5. Fuss–Catalan number - Wikipedia

    en.wikipedia.org/wiki/Fuss–Catalan_number

    Whilst the above is a concrete example Catalan numbers, similar problems can be evaluated using Fuss-Catalan formula: Computer Stack : ways of arranging and completing a computer stack of instructions, each time step 1 instruction is processed and p new instructions arrive randomly.

  6. Catalan's triangle - Wikipedia

    en.wikipedia.org/wiki/Catalan's_triangle

    Catalan's trapezoids are a countable set of number trapezoids which generalize Catalan’s triangle. Catalan's trapezoid of order m = 1, 2, 3, ... is a number trapezoid whose entries (,) give the number of strings consisting of n X-s and k Y-s such that in every initial segment of the string the number of Y-s does not exceed the number of X-s by m or more. [6]

  7. Wikipedia : Reference desk/Archives/Mathematics/2014 October 28

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    1.1 Catalan number. 2 comments. 1.2 Situations where indeterminate forms are NOT considered indeterminate. 2 comments. Toggle the table of contents.

  8. Catalan's conjecture - Wikipedia

    en.wikipedia.org/wiki/Catalan's_conjecture

    Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University.

  9. Catalan pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Catalan_pseudoprime

    The only known Catalan pseudoprimes are: 5907, 1194649, and 12327121 (sequence A163209 in the OEIS) with the latter two being squares of Wieferich primes. In general, if p is a Wieferich prime, then p 2 is a Catalan pseudoprime.

  1. Ads

    related to: catalan numbers pdf worksheet 1