Search results
Results from the WOW.Com Content Network
A flagellum (/ f l ə ˈ dʒ ɛ l əm /; pl.: flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores , and from a wide range of microorganisms to provide motility.
Although protist flagella have a diversity of forms and functions, [11] two large families, flagellates and ciliates, can be distinguished by the shape and beating pattern of their flagella. [ 2 ] In the phylogenetic tree on the right, aquatic organisms (living in marine, brackish, or freshwater environments) have their branches drawn in blue ...
Helicobacter pylori electron micrograph, showing multiple flagella on the cell surface. The structure of flagellin is responsible for the helical shape of the flagellar filament, which is important for its proper function. [4] It is transported through the center of the filament to the tip where it polymerases spontaneously into a part of the ...
Some other Arthropoda do however have intrinsic muscles throughout the flagellum. Such groups include the Symphyla, Collembola and Diplura. In many true insects, especially the more primitive groups such as Thysanura and Blattodea, the flagellum partly or entirely consists of a flexibly connected string of small ring-shaped annuli. The annuli ...
It gets its name from the combination of "Sarcodina" (which is an older term used for amoeboids) [4] and "Mastigophora" (which is an older term for flagellates).. The characteristics of phylum sarcomastigophora are :
Another pattern of flagella adherence involves flagella emerging from flagellar folds, which are grooves that run parallel to the cell, and then attaching to each other. [2] [19] Another key component of a Trichonympha cell is the basal body and parabasal fibres. Trichonympha has long basal bodies which give rise to the flagella. [21]
These are often packed together to form two or more rods, which function in ingestion, and in Entosiphon form an extendable siphon. Most phagotrophic euglenids have two flagella, one leading and one trailing. The latter is used for gliding along the substrate. In some, such as Peranema, the leading flagellum is rigid and beats only at its tip.
The flagella are arranged in one or more clusters near the anterior of the cell. Their basal bodies are linked to parabasal fibers that attach to prominent Golgi complexes, distinctive to the group. Usually they also give rise to a sheet of cross-like microtubules that runs down the center of the cell and in some cases projects past the end.