enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciprocal ...

  3. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    In geometry, focuses or foci (/ ˈ f oʊ k aɪ /; sg.: focus) are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections , the four types of which are the circle , ellipse , parabola , and hyperbola .

  4. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A circle is an ellipse with two coinciding foci. The limit of hyperbolas as the foci are brought together is degenerate: a pair of intersecting lines. If an orthogonal net of ellipses and hyperbolas is transformed by bringing the two foci together, the result is thus an orthogonal net of concentric circles and lines passing through the circle ...

  5. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either an ellipse and a hyperbola, where the hyperbola is contained in a plane, which is orthogonal to the plane containing the ellipse. The vertices of the hyperbola are the foci of the ellipse and its foci are the ...

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    In addition to the eccentricity (e), foci, and directrix, various geometric features and lengths are associated with a conic section. The principal axis is the line joining the foci of an ellipse or hyperbola, and its midpoint is the curve's center. A parabola has no center. The linear eccentricity (c) is the distance between the center and a ...

  7. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e), is the distance between its center and either of its two foci. The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a : that is, e = c a {\displaystyle e={\frac {c}{a}}} (lacking a center, the linear eccentricity for ...

  8. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    A parabola can be obtained as the limit of a sequence of ellipses where one focus is kept fixed as the other is allowed to move arbitrarily far away in one direction, keeping fixed. Thus a and b tend to infinity, a faster than b. The length of the semi-minor axis could also be found using the following formula: [2]

  9. Director circle - Wikipedia

    en.wikipedia.org/wiki/Director_circle

    More generally, for any collection of points P i, weights w i, and constant C, one can define a circle as the locus of points X such that (,) =.. The director circle of an ellipse is a special case of this more general construction with two points P 1 and P 2 at the foci of the ellipse, weights w 1 = w 2 = 1, and C equal to the square of the major axis of the ellipse.