Search results
Results from the WOW.Com Content Network
Spark Core is the foundation of the overall project. It provides distributed task dispatching, scheduling, and basic I/O functionalities, exposed through an application programming interface (for Java, Python, Scala, .NET [16] and R) centered on the RDD abstraction (the Java API is available for other JVM languages, but is also usable for some other non-JVM languages that can connect to the ...
A fourth version of the SPARK language, SPARK 2014, based on Ada 2012, was released on April 30, 2014. SPARK 2014 is a complete re-design of the language and supporting verification tools. The SPARK language consists of a well-defined subset of the Ada language that uses contracts to describe the specification of components in a form that is ...
Spark NLP is licensed under the Apache 2.0 license. The source code is publicly available on GitHub as well as documentation and a tutorial. Prebuilt versions of Spark NLP are available in PyPi and Anaconda Repository for Python development, in Maven Central for Java & Scala development, and in Spark Packages for Spark development.
Apache SystemDS (Previously, Apache SystemML) is an open source ML system for the end-to-end data science lifecycle. SystemDS's distinguishing characteristics are: Algorithm customizability via R-like and Python-like languages. Multiple execution modes, including Standalone, Spark Batch, Spark MLContext, Hadoop Batch, and JMLC.
Data version control is a method of working with data sets. It is similar to the version control systems used in traditional software development, but is optimized to allow better processing of data and collaboration in the context of data analytics, research, and any other form of data analysis.
Apache 2.0: Yes Apache Spark Scala Scala, Python No No Yes Yes ... Intel Data Analytics Acceleration ... Via separately maintained package [48] [49] [50] Yes Yes Yes ...
DVC is a free and open-source, platform-agnostic version system for data, machine learning models, and experiments. [1] It is designed to make ML models shareable, experiments reproducible, [2] and to track versions of models, data, and pipelines. [3] [4] [5] DVC works on top of Git repositories [6] and cloud storage. [7]
Apache Iceberg is a high performance open-source format for large analytic tables. Iceberg enables the use of SQL tables for big data while making it possible for engines like Spark, Trino, Flink, Presto, Hive, Impala, StarRocks, Doris, and Pig to safely work with the same tables, at the same time. [1] Iceberg is released under the Apache ...