Search results
Results from the WOW.Com Content Network
The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation ...
The scattering amplitude is evaluated recursively through a set of Dyson-Schwinger equations. The computational cost of this algorithm grows asymptotically as 3 n, where n is the number of particles involved in the process, compared to n! in the traditional Feynman graphs approach. Unitary gauge is used and mass effects are available as well.
In scattering theory, a part of mathematical physics, the Dyson series, formulated by Freeman Dyson, is a perturbative expansion of the time evolution operator in the interaction picture. Each term can be represented by a sum of Feynman diagrams .
By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirō Tomonaga and Julian Schwinger appreciated that covariant perturbation ...
Yeats is the author of the books Rearranging Dyson–Schwinger Equations (Memoirs of the American Mathematical Society, 2011) [7] and A Combinatorial Perspective on Quantum Field Theory (Springer, 2017). [8]
Dyson originated several concepts that bear his name, such as Dyson's transform, a fundamental technique in additive number theory, [5] which he developed as part of his proof of Mann's theorem; [6] the Dyson tree, a hypothetical genetically engineered plant capable of growing in a comet; the Dyson series, a perturbative series where each term ...
The technique of renormalization, suggested by Ernst Stueckelberg and Hans Bethe and implemented by Dyson, Feynman, Schwinger, and Tomonaga compensates for this effect and eliminates the troublesome infinities. After renormalization, calculations using Feynman diagrams match experimental results with very high accuracy.
Julian Schwinger, winner of the 1965 Nobel Prize in Physics.Original caption: "His laboratory is his ballpoint pen." Julian Seymour Schwinger (/ ˈ ʃ w ɪ ŋ ər /; February 12, 1918 – July 16, 1994) was a Nobel Prize-winning American theoretical physicist.