Search results
Results from the WOW.Com Content Network
Pressure is a scalar quantity. It relates the vector area element (a vector normal to the surface) with the normal force acting on it. The pressure is the scalar proportionality constant that relates these two normal vectors: = =.
vector Pressure gradient: Pressure per unit distance pascal/m L −2 M 1 T −2: vector Temperature gradient: steepest rate of temperature change at a particular location K/m L −1 Θ: vector Torque: τ: Product of a force and the perpendicular distance of the force from the point about which it is exerted
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.
The name "dot product" is derived from the dot operator " · " that is often used to designate this operation; [1] the alternative name "scalar product" emphasizes that the result is a scalar, rather than a vector (as with the vector product in three-dimensional space).
Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w . In mathematics and physics , a vector space (also called a linear space) is a set whose elements, often called vectors , can be added together and multiplied ...
for any differentiable scalar φ and vector A. The first identity implies that any term in the Navier–Stokes equation that may be represented as the gradient of a scalar will disappear when the curl of the equation is taken. Commonly, pressure p and external acceleration g will be eliminated, resulting in (this is true in 2D as well as 3D):
For vector flux, the surface integral of j over a surface S, gives the proper flowing per unit of time through the surface: = ^ =, where A (and its infinitesimal) is the vector area – combination = ^ of the magnitude of the area A through which the property passes and a unit vector ^ normal to the area. Unlike in the second set of equations ...