Search results
Results from the WOW.Com Content Network
Basic aircraft control surfaces and motion. A)aileron B)control stick C)elevator D)rudder. Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude. Development of an effective set of flight control surfaces was a critical advance in the development of aircraft.
Cockpit controls and instrument panel of a Cessna 182D Skylane. Generally, the primary cockpit flight controls are arranged as follows: [2] A control yoke (also known as a control column), centre stick or side-stick (the latter two also colloquially known as a control or joystick), governs the aircraft's roll and pitch by moving the ailerons (or activating wing warping on some very early ...
A rudder pedal is a foot-operated aircraft flight control interface for controlling the rudder of an aircraft. [1] [2] The usual set-up in modern aircraft is that each pilot has a pedal set consisting of a pair of pedals, with one pedal for each foot. Each right and left pedal works together so that one pedal pops out when the other is ...
Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch , roll and yaw .
A flight control mode or flight control law is a computer software algorithm that transforms the movement of the yoke or joystick, made by an aircraft pilot, into movements of the aircraft control surfaces. The control surface movements depend on which of several modes the flight computer is in.
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft. An aeroplane ( airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
Essential flight control surfaces are attached here to control the direction of the departing air flow, and exert a controlling force on the aircraft. [2] Such control surfaces include ailerons on the wings for roll control, elevators on the tailplane controlling pitch , and the rudder on the fin controlling yaw .
A hydraulic system is required for high speed flight and large aircraft to convert the crews' control system movements to surface movements. The hydraulic system is also used to extend and retract landing gear, operate flaps and slats, operate the wheel brakes and steering systems.