Search results
Results from the WOW.Com Content Network
If the number 1 is excluded, while keeping divisibility as ordering on the elements greater than 1, then the resulting poset does not have a least element, but any prime number is a minimal element for it. In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is ...
An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...
A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...
An antichain in is a subset of in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in . (However, some authors use the term "antichain" to mean strong antichain , a subset such that there is no element of the poset smaller than two distinct elements of the antichain.)
Next it is shown that the poset of partial orders extending , ordered by extension, has a maximal element. The existence of such a maximal element is proved by applying Zorn's lemma to this poset. Zorn's lemma states that a partial order in which every chain has an upper bound has a maximal element. A chain in this poset is a set of relations ...
If is the set of rational numbers, viewed as a totally ordered set with the usual numerical order, then each element of the Dedekind–MacNeille completion of may be viewed as a Dedekind cut, and the Dedekind–MacNeille completion of is the total ordering on the real numbers, together with the two additional values .
In mathematics, especially in order theory, the greatest element of a subset of a partially ordered set (poset) is an element of that is greater than every other element of . The term least element is defined dually , that is, it is an element of S {\displaystyle S} that is smaller than every other element of S . {\displaystyle S.}
A partial order of dimension 4 (shown as a Hasse diagram) and four total orderings that form a realizer for this partial order.. In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order.