Search results
Results from the WOW.Com Content Network
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
The newton (symbol: N) is the unit of force in the International System of Units (SI). Expressed in terms of SI base units, it is 1 kg⋅m/s 2, the force that accelerates a mass of one kilogram at one metre per second squared. The unit is named after Isaac Newton in recognition of his work on classical mechanics, specifically his second law of ...
The dyne (symbol: dyn; from Ancient Greek δύναμις (dúnamis) 'power, force') is a derived unit of force specified in the centimetre–gram–second (CGS) system of units, a predecessor of the modern SI.
The kilogram is the only coherent SI unit whose name and symbol include a prefix. For historical reasons, the names and symbols for multiples and sub-multiples of the unit of mass are formed as if the gram were the base unit. Prefix names and symbols are attached to the unit name gram and the unit symbol g
Quantity Unit Remarks Name Symbol Name Symbol Definition Force: F: newton: N 1 N = 1 kg·m/s 2: Unit named after Isaac Newton: Moment of force, Torque: M, : N·m 1 N·m = 1 kg·m 2 /s 2: The unit is dimensionally equivalent to the units of energy, the joule; but the joule should not be used as an alternative for the newton metre.
Cartesian y-axis basis unit vector unitless kinetic energy: joule (J) wave vector: radian per meter (m −1) Boltzmann constant: joule per kelvin (J/K) wavenumber: radian per meter (m −1) stiffness: newton per meter (N⋅m −1) ^ Cartesian z-axis basis unit vector
Product of a force and the perpendicular distance of the force from the point about which it is exerted newton-metre (N⋅m) L 2 M T −2: bivector (or pseudovector in 3D) Velocity: v →: Moved distance per unit time: the first time derivative of position m/s L T −1: vector Wavevector: k →
The value of g n (9.806 65 m/s 2) as used in the official definition of the kilogram-force is used here for all gravitational units. This page was last ...