Search results
Results from the WOW.Com Content Network
SuanShu is a Java math library. It is open-source under Apache License 2.0 available in GitHub. SuanShu is a large collection of Java classes for basic numerical analysis, statistics, and optimization. [1] It implements a parallel version of the adaptive strassen's algorithm for fast matrix multiplication. [2]
exp4j is a small Java library for evaluation of mathematical expressions. SuanShu is an open-source Java math library. It supports numerical analysis, statistics and optimization. Maja is an open-source Java library focusing primarily on correct implementations of various special functions.
In computer science, a math library (or maths library) is a component of a programming language's standard library containing functions (or subroutines) for the most common mathematical functions, such as trigonometry and exponentiation. Bit-twiddling and control functionalities related to floating point numbers may also be included (such as in C).
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]
Java: Class java.math.BigInteger (integer), java.math.BigDecimal Class (decimal) JavaScript: as of ES2020, BigInt is supported in most browsers; [2] the gwt-math library provides an interface to java.math.BigDecimal, and libraries such as DecimalJS, BigInt and Crunch support arbitrary-precision integers.
A common example of a sigmoid function is the logistic function, which is defined by the formula: [1] ... Sign function – Mathematical function returning -1, 0 or 1;
These examples reduce easily to a single recursive function by inlining the forest function in the tree function, which is commonly done in practice: directly recursive functions that operate on trees sequentially process the value of the node and recurse on the children within one function, rather than dividing these into two separate functions.
In the example above, + is an associative operation, so the final result will be the same regardless of parenthesization, although the specific way in which it is calculated will be different. In the general case of non-associative binary functions, the order in which the elements are combined may influence the final result's value.