Search results
Results from the WOW.Com Content Network
In machine learning, backpropagation [1] is a gradient estimation method commonly used for training a neural network to compute its parameter updates. It is an efficient application of the chain rule to neural networks.
Backpropagation; Rescorla–Wagner model – the origin of delta rule; References This page was last edited on 27 October 2023, at 04:45 (UTC). ...
Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]
The standard method for training RNN by gradient descent is the "backpropagation through time" (BPTT) algorithm, which is a special case of the general algorithm of backpropagation. A more computationally expensive online variant is called "Real-Time Recurrent Learning" or RTRL, [ 78 ] [ 79 ] which is an instance of automatic differentiation in ...
Backpropagation through time (BPTT) is a gradient-based technique for training certain types of recurrent neural networks, such as Elman networks. The algorithm was independently derived by numerous researchers.
In 1970, Seppo Linnainmaa published the modern form of backpropagation in his master thesis (1970). [23] [24] [13] G.M. Ostrovski et al. republished it in 1971. [25] [26] Paul Werbos applied backpropagation to neural networks in 1982 [7] [27] (his 1974 PhD thesis, reprinted in a 1994 book, [28] did not yet describe the algorithm [26]).
The program produces parameter weights that minimize the sum of squared errors between the measured data points and the neural network predictions at those points. GEKKO uses gradient-based optimizers to determine the optimal weight values instead of standard methods such as backpropagation. The gradients are determined by automatic ...
Backpropagation was first described in 1986, with stochastic gradient descent being used to efficiently optimize parameters across neural networks with multiple hidden layers. Soon after, another improvement was developed: mini-batch gradient descent, where small batches of data are substituted for single samples.