enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    In machine learning, backpropagation [1] is a gradient estimation method commonly used for training a neural network to compute its parameter updates. It is an efficient application of the chain rule to neural networks.

  3. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Backpropagation; Rescorla–Wagner model – the origin of delta rule; References This page was last edited on 27 October 2023, at 04:45 (UTC). ...

  4. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  5. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    The standard method for training RNN by gradient descent is the "backpropagation through time" (BPTT) algorithm, which is a special case of the general algorithm of backpropagation. A more computationally expensive online variant is called "Real-Time Recurrent Learning" or RTRL, [ 78 ] [ 79 ] which is an instance of automatic differentiation in ...

  6. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Backpropagation through time (BPTT) is a gradient-based technique for training certain types of recurrent neural networks, such as Elman networks. The algorithm was independently derived by numerous researchers.

  7. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    In 1970, Seppo Linnainmaa published the modern form of backpropagation in his master thesis (1970). [23] [24] [13] G.M. Ostrovski et al. republished it in 1971. [25] [26] Paul Werbos applied backpropagation to neural networks in 1982 [7] [27] (his 1974 PhD thesis, reprinted in a 1994 book, [28] did not yet describe the algorithm [26]).

  8. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    The program produces parameter weights that minimize the sum of squared errors between the measured data points and the neural network predictions at those points. GEKKO uses gradient-based optimizers to determine the optimal weight values instead of standard methods such as backpropagation. The gradients are determined by automatic ...

  9. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Backpropagation was first described in 1986, with stochastic gradient descent being used to efficiently optimize parameters across neural networks with multiple hidden layers. Soon after, another improvement was developed: mini-batch gradient descent, where small batches of data are substituted for single samples.