Search results
Results from the WOW.Com Content Network
Posterior probability is a conditional probability conditioned on randomly observed data. Hence it is a random variable. For a random variable, it is important to summarize its amount of uncertainty. One way to achieve this goal is to provide a credible interval of the posterior probability. [11]
In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. [1] [2]Given a set of N i.i.d. observations = {, …,}, a new value ~ will be drawn from a distribution that depends on a parameter , where is the parameter space.
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .
This equation, showing the relationship between the conditional probability and the individual events, is known as Bayes' theorem. This simple expression encapsulates the technical core of Bayesian inference which aims to incorporate the updated belief, P ( θ ∣ y ) {\displaystyle P(\theta \mid y)} , in appropriate and solvable ways.
The resulting limit is the conditional probability distribution of Y given X and exists when the denominator, the probability density (), is strictly positive. It is tempting to define the undefined probability P ( A ∣ X = x ) {\displaystyle P(A\mid X=x)} using limit ( 1 ), but this cannot be done in a consistent manner.
In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...
In measure-theoretic probability theory, the density function is defined as the Radon–Nikodym derivative of the probability distribution relative to a common dominating measure. [5] The likelihood function is this density interpreted as a function of the parameter, rather than the random variable. [ 6 ]