Search results
Results from the WOW.Com Content Network
In the case of a plane simple closed curve (that is, a curve in the plane whose starting point is also the end point and which has no other self-intersections), the curve is said to be positively oriented or counterclockwise oriented, if one always has the curve interior to the left (and consequently, the curve exterior to the right), when ...
The counterclockwise or anticlockwise direction Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW ) proceeds in the same direction as a clock 's hands relative to the observer: from the top to the right, then down and then to the left, and back up to the top.
A sphere rotating (spinning) about an axis. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation.A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation.
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations , which have no fixed points, and (hyperplane) reflections , each of them having an entire ( n − 1) -dimensional flat of ...
where for every direction in the base space, S n, the fiber over it in the total space, SO(n + 1), is a copy of the fiber space, SO(n), namely the rotations that keep that direction fixed. Thus we can build an n × n rotation matrix by starting with a 2 × 2 matrix, aiming its fixed axis on S 2 (the ordinary sphere in three-dimensional space ...
An object traveling along the red curve makes two counterclockwise turns around the person at the origin. Suppose we are given a closed, oriented curve in the xy plane. We can imagine the curve as the path of motion of some object, with the orientation indicating the direction in which the object moves.
A torus is an orientable surface The Möbius strip is a non-orientable surface. Note how the disk flips with every loop. The Roman surface is non-orientable.. In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". [1]