Search results
Results from the WOW.Com Content Network
Once activated, norepinephrine and epinephrine are released directly into the blood by adrenomedullary cells where they act as the bodily mechanism for "fight-or-flight" responses. Because of this, the sympathoadrenal system plays a large role in maintaining glucose levels, sodium levels, blood pressure, and various other metabolic pathways ...
A free nerve ending (FNE) or bare nerve ending, is an unspecialized, afferent nerve fiber sending its signal to a sensory neuron. Afferent in this case means bringing information from the body's periphery toward the brain. They function as cutaneous nociceptors and are essentially used by vertebrates to detect noxious stimuli that often result ...
Nerve fibers in the iris with noradrenaline. The catecholamines are a group of neurotransmitters composed of the endogenous substances dopamine, noradrenaline (norepinephrine), and adrenaline (epinephrine), as well as numerous artificially synthesized compounds such as isoprenaline - an anti-bradycardiac medication. [1]
The cells form clusters around fenestrated capillaries where they release norepinephrine and epinephrine into the blood. As a cluster of neuron cell bodies, the adrenal medulla is considered a modified ganglion of the sympathetic nervous system.
The source that Eccles referred to was a lecture published by Dale in 1934, called Pharmacology and nerve endings, describing some of the early research into the physiology of neurotransmission. [3] At that time, only two chemical transmitters were known, acetylcholine and noradrenaline (then thought to be adrenaline ). [ 4 ]
Another notable structure is the medulla of the adrenal gland, where chromaffin cells function as modified post-ganglionic nerves. Instead of releasing epinephrine and norepinephrine into a synaptic cleft, these cells of the adrenal medulla release the catecholamines into the blood stream as hormones. [ 1 ]
The α 2-adrenergic receptor binds both norepinephrine released by sympathetic postganglionic fibers and epinephrine (adrenaline) released by the adrenal medulla, binding norepinephrine with slightly higher affinity. [4] It has several general functions in common with the α 1-adrenergic receptor, but also has specific effects of its own.
Accordingly, nerve endings release their neurotransmitters in extracellular space in a manner similar to paracrine secretion. Target cells affected by a locally released transmitter even though located several hundreds to thousands of nanometers away from the release site are considered as being innervated.