enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  3. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    The term "k-means" was first used by James MacQueen in 1967, [2] though the idea goes back to Hugo Steinhaus in 1956. [3]The standard algorithm was first proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for pulse-code modulation, although it was not published as a journal article until 1982. [4]

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Variations of k-means often include such optimizations as choosing the best of multiple runs, but also restricting the centroids to members of the data set (k-medoids), choosing medians (k-medians clustering), choosing the initial centers less randomly (k-means++) or allowing a fuzzy cluster assignment (fuzzy c-means).

  5. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  6. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    If the chart looks like an arm, the best value of k will be on the "elbow". [2] Another method that modifies the k-means algorithm for automatically choosing the optimal number of clusters is the G-means algorithm. It was developed from the hypothesis that a subset of the data follows a Gaussian distribution.

  7. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  8. JASP - Wikipedia

    en.wikipedia.org/wiki/JASP

    Clustering Density-Based Clustering; Fuzzy C-Means Clustering; Hierarchical Clustering; Model-based clustering; Neighborhood-based Clustering (i.e., K-Means Clustering, K-Medians clustering, K-Medoids clustering) Random Forest Clustering; Meta Analysis: Synthesise evidence across multiple studies. Includes techniques for fixed and random ...

  9. Calinski–Harabasz index - Wikipedia

    en.wikipedia.org/wiki/Calinski–Harabasz_index

    Similar to other clustering evaluation metrics such as Silhouette score, the CH index can be used to find the optimal number of clusters k in algorithms like k-means, where the value of k is not known a priori. This can be done by following these steps: Perform clustering for different values of k. Compute the CH index for each clustering result.