Search results
Results from the WOW.Com Content Network
In humans, however, the olfactory bulb is on the inferior (bottom) side of the brain. The olfactory bulb is supported and protected by the cribriform plate of the ethmoid bone, which in mammals separates it from the olfactory epithelium, and which is perforated by olfactory nerve axons. The bulb is divided into two distinct structures: the main ...
As in the main olfactory system, the axons of these sensory neurons project from the vomeronasal organ to the accessory olfactory bulb, which in the mouse is located on the dorsal-posterior portion of the main olfactory bulb. Unlike in the main olfactory system, the axons that leave the accessory olfactory bulb do not project to the brain's ...
The olfactory system, is the sensory system used for the sense of smell (olfaction). Olfaction is one of the special senses directly associated with specific organs. Most mammals and reptiles have a main olfactory system and an accessory olfactory system. The main olfactory system detects airborne substances, while the accessory system senses ...
An example of a non-mapped sensory processing system is the olfactory system where unrelated odorants are processed side-by-side in the olfactory bulb. In addition to non-mapped and mapped processing, stimuli may be processed under multiple maps as in the human visual system.
These ORNs then project their axons to the olfactory bulb. In the olfactory bulb, the ORNs synapse with termination in the glomeruli. [6] Each glomerulus receives input from olfactory receptor neurons expressing only one type of olfactory receptor. The glomerular activation patterns within the olfactory bulb are thought to represent the quality ...
The visual system and the somatosensory system are active even during resting state fMRI Activation and response in the sensory nervous system. The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons (including the sensory receptor cells), neural ...
Odor perception is a complex process involving the central nervous system and can evoke psychological and physiological responses. Because the olfactory signal terminates in or near the amygdala, odors are strongly linked to memories and can evoke emotions. The amygdala participates in the hedonic or emotional processing of olfactory stimuli. [49]
Since neuropils have a diverse role in the nervous system, it is difficult to define a certain overarching function for all neuropils. For instance, the olfactory glomeruli function as sorts of way-stations for the information flowing from the olfactory receptor neurons to the olfactory cortex. The inner plexiform layer of the retina is a ...