Search results
Results from the WOW.Com Content Network
This article gives an example of a zero-sum game that has no value. It is due to Sion and Wolfe. [1] Zero-sum games with a finite number of pure strategies are known to have a minimax value (originally proved by John von Neumann) but this is not necessarily the case if the game has an infinite set of strategies. There follows a simple example ...
In mathematics, an empty sum, or nullary sum, [1] is a summation where the number of terms is zero. The natural way to extend non-empty sums [ 2 ] is to let the empty sum be the additive identity . Let a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} , a 3 {\displaystyle a_{3}} , ... be a sequence of numbers, and let
Zero-sum thinking perceives situations as zero-sum games, where one person's gain would be another's loss. [ 1 ] [ 2 ] [ 3 ] The term is derived from game theory . However, unlike the game theory concept, zero-sum thinking refers to a psychological construct —a person's subjective interpretation of a situation.
Trick number operate grow between large positive sum and large negative sum. Describe discrete convolute. Integer, create graph 1 both zero (x- axis) integer. Value zero (y-axis). Two possible integer; add, or do not include integer add zero. Result convolute intege graph. Result graph show number solution sum give value. Example, 3 integer: (2 ...
The Gaussian VaR ensures subadditivity: for example, the Gaussian VaR of a two unitary long positions portfolio at the confidence level is, assuming that the mean portfolio value variation is zero and the VaR is defined as a negative loss, = + + where is the inverse of the normal cumulative distribution function at probability level , , are the ...
For example, consider the function index, which takes a string and a substring, and returns the integer index of the substring in the main string. If the search fails, the function may be programmed to return −1 (or any other negative value), since this can never signify a successful result.
The zero-sum property (if one gains, another loses) means that any result of a zero-sum situation is Pareto optimal. Generally, any game where all strategies are Pareto optimal is called a conflict game. [7] [8] Zero-sum games are a specific example of constant sum games where the sum of each outcome is always zero. [9]
For example, if the summands are uncorrelated random numbers with zero mean, the sum is a random walk, and the condition number will grow proportional to . On the other hand, for random inputs with nonzero mean the condition number asymptotes to a finite constant as n → ∞ {\displaystyle n\to \infty } .