Search results
Results from the WOW.Com Content Network
Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization , some or all of the variables used in a discrete optimization problem are restricted to be discrete variables —that is, to assume only a discrete set of values, such as the integers .
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [1] [2] It is generally divided into two subfields: discrete optimization and continuous optimization.
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
In practice, this generally requires numerical techniques for some discrete approximation to the exact optimization relationship. Alternatively, the continuous process can be approximated by a discrete system, which leads to a following recurrence relation analog to the Hamilton–Jacobi–Bellman equation:
An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set. A problem with continuous variables is known as a continuous optimization, in which an optimal value from a continuous function must be found.
Hill climbing attempts to maximize (or minimize) a target function (), where is a vector of continuous and/or discrete values. At each iteration, hill climbing will adjust a single element in x {\displaystyle \mathbf {x} } and determine whether the change improves the value of f ( x ) {\displaystyle f(\mathbf {x} )} .
Optimal control is an extension of the calculus of variations, and is a mathematical optimization method for deriving control policies. [6] The method is largely due to the work of Lev Pontryagin and Richard Bellman in the 1950s, after contributions to calculus of variations by Edward J. McShane . [ 7 ]
A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions. [1] [2] This framework contrasts with deterministic optimization, in which all problem parameters are assumed to be known exactly. The goal of stochastic programming is to find a decision which both ...