Ad
related to: secant example geometrykutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In geometry, a secant is a line that intersects a curve at a minimum of two distinct points. [1] The word secant comes from the Latin word secare, ... For example, if ...
A secant variety can be used to show the fact that a smooth projective curve can be embedded into the projective 3-space as follows. [2] Let be a smooth curve. Since the dimension of the secant variety S to C has dimension at most 3, if >, then there is a point p on that is not on S and so we have the projection from p to a hyperplane H, which gives the embedding :.
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.
Secant is a term in mathematics derived from the Latin secare ("to cut"). It may refer to: a secant line, in geometry; the secant variety, in algebraic geometry; secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciprocal) trigonometric function of the cosine
If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow"). More generally, a chord is a line segment joining two points on any curve, for instance, on an ellipse.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
In Euclidean geometry, the intersecting secants theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the ...
By the secant-tangent theorem, the square of this tangent length equals the power of the point P in the circle C. This power equals the product of distances from P to any two intersection points of the circle with a secant line passing through P. The angle θ between a chord and a tangent is half the arc belonging to the chord.
Ad
related to: secant example geometrykutasoftware.com has been visited by 10K+ users in the past month