enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    If momentum is to be conserved over the volume V over a region Q, changes in the momentum of matter through the Lorentz force must be balanced by changes in the momentum of the electromagnetic field and outflow of momentum. If P mech is the momentum of all the particles in Q, and the particles are treated as a continuum, then Newton's second ...

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0 .

  4. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    Although the quantity p kin is the "physical momentum", in that it is the quantity to be identified with momentum in laboratory experiments, it does not satisfy the canonical commutation relations; only the canonical momentum does that. This can be seen as follows.

  5. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    Top: If wavelength λ is unknown, so are momentum p, wave-vector k and energy E (de Broglie relations). As the particle is more localized in position space, Δx is smaller than for Δp x. Bottom: If λ is known, so are p, k, and E. As the particle is more localized in momentum space, Δp is smaller than for Δx.

  6. Crystal momentum - Wikipedia

    en.wikipedia.org/wiki/Crystal_momentum

    In solid-state physics, crystal momentum or quasimomentum is a momentum-like vector associated with electrons in a crystal lattice. [2] It is defined by the associated wave vectors k {\displaystyle \mathbf {k} } of this lattice, according to

  7. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    P = (E/c, p) is the four-momentum, K = (ω/c, k) is the four-wavevector, E = energy of particle; ω = 2πf is the angular frequency and frequency of the particle; ħ = h/2π are the Planck constants; c = speed of light

  8. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    Conservation of four-momentum gives p C μ = p A μ + p B μ, while the mass M of the heavier particle is given by −P C ⋅ P C = M 2 c 2. By measuring the energies and three-momenta of the daughter particles, one can reconstruct the invariant mass of the two-particle system, which must be equal to M.

  9. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    This equation states that the kinetic energy (E k) is equal to the integral of the dot product of the momentum (p) of a body and the infinitesimal change of the velocity (v) of the body. It is assumed that the body starts with no kinetic energy when it is at rest (motionless).