enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  3. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    "The problem of deciding whether the definite contour multiple integral of an elementary meromorphic function is zero over an everywhere real analytic manifold on which it is analytic", a consequence of the MRDP theorem resolving Hilbert's tenth problem. [6] Determining the domain of a solution to an ordinary differential equation of the form

  4. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    Cobweb plot of the orbit 10 → 5 → 8 → 4 → 2 → 1 → ... in an extension of the Collatz map to the real line. The Collatz map can be extended to the real line by choosing any function which evaluates to x / 2 {\displaystyle x/2} when x {\displaystyle x} is an even integer, and to either 3 x + 1 {\displaystyle 3x+1} or ( 3 x + 1 ) / 2 ...

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    For example, x²-6 is a polynomial with integer coefficients, since 1 and -6 are integers. The roots of x²-6=0 are x=√6 and x=-√6, so that means √6 and -√6 are algebraic numbers.

  6. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  7. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    Subset sum problem, an algorithmic problem that can be used to find the shortest representation of a given number as a sum of powers; Pollock's conjectures; Sums of three cubes, discusses what numbers are the sum of three not necessarily positive cubes; Sums of four cubes problem, discusses whether every integer is the sum of four cubes of integers

  8. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Landau's fourth problem asked whether there are infinitely many primes which are of the form = + for integer n. (The list of known primes of this form is A002496 .) The existence of infinitely many such primes would follow as a consequence of other number-theoretic conjectures such as the Bunyakovsky conjecture and Bateman–Horn conjecture .

  9. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    For example, 21, 4, 0, and −2048 are integers, while 9.75, ⁠5 + 1 / 2 ⁠, 5/4, and √ 2 are not. [8] The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers.