enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    In 2015, an anonymous Japanese woman using the pen name "aerile re" published the first known method (the method of 3 circumcenters) to construct a proof in elementary geometry for a special class of adventitious quadrangles problem. [7] [8] [9] This work solves the first of the three unsolved problems listed by Rigby in his 1978 paper. [5]

  3. Generalization - Wikipedia

    en.wikipedia.org/wiki/Generalization

    A polygon is a generalization of a 3-sided triangle, a 4-sided quadrilateral, and so on to n sides. A hypercube is a generalization of a 2-dimensional square, a 3-dimensional cube, and so on to n dimensions. A quadric, such as a hypersphere, ellipsoid, paraboloid, or hyperboloid, is a generalization of a conic section to higher dimensions.

  4. Simson line - Wikipedia

    en.wikipedia.org/wiki/Simson_line

    The Simson line of a vertex of the triangle is the altitude of the triangle dropped from that vertex, and the Simson line of the point diametrically opposite to the vertex is the side of the triangle opposite to that vertex. If P and Q are points on the circumcircle, then the angle between the Simson lines of P and Q is half the angle of the ...

  5. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment,

  6. Droz-Farny line theorem - Wikipedia

    en.wikipedia.org/wiki/Droz-Farny_line_theorem

    Second generalization: Let a conic S and a point P on the plane. Construct three lines d a , d b , d c through P such that they meet the conic at A, A'; B, B' ; C, C' respectively. Let D be a point on the polar of point P with respect to (S) or D lies on the conic (S).

  7. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Generalization for arbitrary triangles, green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure ...

  8. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  9. Generalization (learning) - Wikipedia

    en.wikipedia.org/wiki/Generalization_(learning)

    Therefore, generalization is a valuable and integral part of learning and everyday life. Generalization is shown to have implications on the use of the spacing effect in educational settings. [13] In the past, it was thought that the information forgotten between periods of learning when implementing spaced presentation inhibited generalization ...