Search results
Results from the WOW.Com Content Network
Invertible matrix. In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. Invertible matrices are the same size as their inverse.
Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.
The following tables list the computational complexity of various algorithms for common mathematical operations. Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, below ...
Determinant. In mathematics, the determinant is a scalar -valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det (A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if ...
This integer a −1 is called a modular multiplicative inverse of a modulo m. If a ≡ b (mod m) and a −1 exists, then a −1 ≡ b −1 (mod m) (compatibility with multiplicative inverse, and, if a = b, uniqueness modulo m). If ax ≡ b (mod m) and a is coprime to m, then the solution to this linear congruence is given by x ≡ a −1 b (mod m).
Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]
In mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix N that is its inverse (these are equivalent under Cramer's rule). Thus every equation Mx = b, where M and b both have integer components and M is ...
Formula computing the inverse of the sum of a matrix and the outer product of two vectors. In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a " rank -1 update" to a matrix whose inverse has previously been computed. [1][2][3] That is, given an invertible matrix and the ...