Search results
Results from the WOW.Com Content Network
Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...
Variable length arithmetic represents numbers as a string of digits of a variable's length limited only by the memory available. Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions.
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
The 80-bit floating-point format has a range (including subnormals) from approximately 3.65 × 10 −4951 to 1.18 × 10 +4932. Although log 10 ( 2 64 ) ≈ 19.266 , this format is usually described as giving approximately eighteen significant digits of precision (the floor of log 10 ( 2 63 ) , the minimum guaranteed precision).
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
ARM processors support (via a floating-point control register bit) an "alternative half-precision" format, which does away with the special case for an exponent value of 31 (11111 2). [10] It is almost identical to the IEEE format, but there is no encoding for infinity or NaNs; instead, an exponent of 31 encodes normalized numbers in the range ...
Any floating-point type can be modified with complex, and is then defined as a pair of floating-point numbers. Note that C99 and C++ do not implement complex numbers in a code-compatible way – the latter instead provides the class std:: complex. All operations on complex numbers are defined in the <complex.h> header.
In addition to the assumption about bit-representation of floating-point numbers, the above floating-point type-punning example also violates the C language's constraints on how objects are accessed: [3] the declared type of x is float but it is read through an expression of type unsigned int.