Search results
Results from the WOW.Com Content Network
Signum function = . In mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero.
In frequentist statistics, the likelihood function is itself a statistic that summarizes a single sample from a population, whose calculated value depends on a choice of several parameters θ 1... θ p , where p is the count of parameters in some already-selected statistical model .
one of the Gegenbauer functions in analytic number theory (may be replaced by the capital form of the Latin letter P). represents: one of the Gegenbauer functions in analytic number theory. the Dickman–de Bruijn function; the radius in a polar, cylindrical, or spherical coordinate system; the correlation coefficient in statistics
The theorem extends to unbounded intervals by defining the sign at +∞ of a polynomial as the sign of its leading coefficient (that is, the coefficient of the term of highest degree). At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree.
Step function – Linear combination of indicator functions of real intervals; Sign function – Mathematical function returning -1, 0 or 1; Heaviside step function – Indicator function of positive numbers; Logistic regression – Statistical model for a binary dependent variable; Logit – Function in statistics
The leading entry (sometimes leading coefficient [citation needed]) of a row in a matrix is the first nonzero entry in that row. So, for example, in the matrix ( 1 2 0 6 0 2 9 4 0 0 0 4 0 0 0 0 ) , {\displaystyle {\begin{pmatrix}1&2&0&6\\0&2&9&4\\0&0&0&4\\0&0&0&0\end{pmatrix}},} the leading coefficient of the first row is 1; that of the second ...
The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .