Search results
Results from the WOW.Com Content Network
The inhomogeneous Helmholtz equation is the equation + = (),, where ƒ : R n → C is a function with compact support, and n = 1, 2, 3. This equation is very similar to the screened Poisson equation , and would be identical if the plus sign (in front of the k term) were switched to a minus sign.
The problem now lies in finding the Green's function G that satisfies equation 1. For this reason, the Green's function is also sometimes called the fundamental solution associated to the operator L. Not every operator admits a Green's function. A Green's function can also be thought of as a right inverse of L.
where , and are the wavenumbers in their respective coordinate axes: = + +. The expansion is named after Hermann Weyl, who published it in 1919. [3] The Weyl identity is largely used to characterize the reflection and transmission of spherical waves at planar interfaces; it is often used to derive the Green's functions for Helmholtz equation in layered media.
The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the n-body problem.It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
The Helmholtz reciprocity principle describes how a ray of light and its reverse ray encounter matched optical adventures, such as reflections, refractions, and absorptions in a passive medium, or at an interface. It does not apply to moving, non-linear, or magnetic media.
The Gibbs–Helmholtz equation is a thermodynamic equation used to calculate changes in the Gibbs free energy of a system as a function of temperature. It was originally presented in an 1882 paper entitled " Die Thermodynamik chemischer Vorgänge " by Hermann von Helmholtz .
In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...